Differential and Linear Cryptanalysis

Lars R. Knudsen

June 2014

Iterated block ciphers (DES, AES, ...)

- plaintext m, ciphertext c, key k
- key-schedule: user-selected key $k \rightarrow k_{0}, \ldots, k_{r}$
- round function, g, weak by itself
- idea: g^{r}, strong for "large" r

Generic attack: r-round iterated ciphers

(1) assume "correlation" between m and c_{r-1}
(2) given a number of pairs (m, c)
(3) repeat for all pairs and all values i of k_{r} :
(1) let $c^{\prime}=g^{-1}(c, i)$, compute $x=\operatorname{cor}\left(m, c^{\prime}\right)$
(2) if key gives $\operatorname{cor}\left(m, c_{r-1}\right)$, increment counter
(9) value of i which yields $\operatorname{cor}\left(m, c_{r-1}\right)$ taken as value of k_{r}

Differential cryptanalysis - (Biham-Shamir 1991)

- chosen plaintext attack
- assume x is combined with key, k, via group operation
- define difference of x_{1} and x_{2} as

$$
\Delta\left(x_{1}, x_{2}\right)=x_{1} \otimes x_{2}^{-1}
$$

- difference same after combination of key

$$
\Delta\left(x_{1} \otimes k, x_{2} \otimes k\right)=x_{1} \otimes k \otimes k^{-1} \otimes x_{2}^{-1}=\Delta\left(x_{1}, x_{2}\right)
$$

- definition of difference relative to cipher (often exor)

Differential cryptanalysis (2)

Consider r-round iterated ciphers of the form

Main criterion for success

distribution of differences through nonlinear components of g is non-uniform

Differential cryptanalysis - example (1)

- n-bit strings m, c, k

$$
c=m \oplus k
$$

- key used only once, system unconditionally secure under a ciphertext-only attack
- key used more than once, the system is insecure, since

$$
c \oplus c^{\prime}=(m \oplus k) \oplus\left(m^{\prime} \oplus k\right)=m \oplus m^{\prime}
$$

- note that key cancels out

Differential cryptanalysis - example (2)

- $k_{0}, k_{1}: n$-bit keys, $S:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

$$
c=S\left(m \oplus k_{0}\right) \oplus k_{1}
$$

- assume attacker knows two pairs messages (m, c) and $\left(m^{\prime}, c^{\prime}\right)$

- from m, m^{\prime}, compute $u \oplus u^{\prime}=m \oplus m^{\prime}$
- key recovery: from c, c^{\prime} and k_{1}, compute $u \oplus u^{\prime}$

Differential cryptanalysis - example (3)

- k_{0}, k_{1}, k_{2} : n-bit keys, $S:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

$$
c=S\left(S\left(m \oplus k_{0}\right) \oplus k_{1}\right) \oplus k_{2}
$$

- assume attacker knows (m, c) and $\left(m^{\prime}, c^{\prime}\right)$

- from m, m^{\prime}, compute $u \oplus u^{\prime}=m \oplus m^{\prime}$
- from c, c^{\prime} and k_{2}, compute $v \oplus v^{\prime}$
- then what?

Differential cryptanalysis - example (4)

- Assume for concreteness that $n=4$ and that S is

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$S(x)$	6	4	c	5	0	7	2	e	1	f	3	d	8	a	9	b

- consider two inputs to S, m and \bar{m}, where \bar{m} is the bitwise complemented value of m.

Linear cryptanalysis

m	m^{\prime}	$S(m)$		$S\left(m^{\prime}\right)$		$S(m) \oplus S\left(m^{\prime}\right)$
0	f	6	\oplus	b	$=$	d
1	e	4	\oplus	9	$=$	d
2	d	c	\oplus	a	$=$	6
3	c	5	\oplus	8	$=$	d
4	b	0	\oplus	d	$=$	d
5	a	7	\oplus	3	$=$	4
6	9	2	\oplus	f	$=$	d
7	8	e	\oplus	1	$=$	f
8	7	1	\oplus	e	$=$	f
9	6	f	\oplus	2	$=$	d
a	5	3	\oplus	7	$=$	4
b	4	d	\oplus	0	$=$	d
c	3	8	\oplus	5	$=$	d
d	2	a	\oplus	c	$=$	6
e	1	9	\oplus	4	$=$	d
f	0	b	\oplus	6	$=$	d

Differential cryptanalysis - example (5)

- choose random m, get $(m, c),\left(m^{\prime}, c^{\prime}\right)$, where $m \oplus m^{\prime}=f_{x}$.
- then $u \oplus u^{\prime}=f_{x}$ $v \oplus v^{\prime}=\delta$
- for correct value of k_{2} : In 10 of 16 cases, one gets $\delta=d_{x}$

Assumption

for an incorrect value of k_{2}, δ is random

Differential cryptanalysis - example (6)

(1) choose random m, compute $m^{\prime}=m \oplus f_{x}$, obtain (m, c) and $\left(m^{\prime}, c^{\prime}\right)$
(2) for $i=0, \ldots, 15: \quad$ (guess $k_{2}=i$)
(1) compute $\delta=S^{-1}(c \oplus i) \oplus S^{-1}\left(c^{\prime} \oplus i\right)$
(2) if $\delta=d_{x}$ increment counter for i
(3) go to 1 , until one counter holds significant value

Main idea in differential attacks

For r-round iterated ciphers

- find suitable differences in plaintexts such that differences in ciphertexts after $r-1$ rounds can be determined with good probability.
- for all values of last-round key k_{r}, compute difference after $r-1$ rounds of encryption from the ciphertexts

Example. CiPHERFour: block size 16, r rounds

Round keys independent, uniformly random. One round:
(1) exclusive-or round key to text
(2) split text, evaluate each nibble via S-box

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$S(x)$	6	4	c	5	0	7	2	e	1	f	3	d	8	a	9	b

and concatenate results into 16 -bit string $y=y_{0}, \ldots, y_{15}$
(3) permute bits in y according to:

y	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$P(y)$	0	4	8	c	1	5	9	d	2	6	a	e	3	7	b	f

Exclusive-or round key to output of last round

Product cipher example - 16-bit messages

Differential characteristics

- denote by

$$
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \xrightarrow{S}\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)
$$

that two 4 -word inputs to S -boxes of differences
$\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ lead to outputs from S-boxes of differences
$\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)$ with some probability p

- similar notation for $P, \quad\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right) \xrightarrow{P}\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right)$
- then

$$
\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \xrightarrow{1 r}\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right)
$$

is called a one-round characteristic of probability p for CipherFour.

Differential characteristics - probabilities

- assume $\operatorname{Pr}\left(\alpha_{i} \xrightarrow{S_{i}} \beta_{i}\right)=p_{i}$ for $i=0, \ldots, 3$ where probability is computed over all inputs to S_{i}
- then $\operatorname{Pr}\left(\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \xrightarrow{S}\left(\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}\right)\right)=p_{0} p_{1} p_{2} p_{3}$
- assume further that $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \xrightarrow{1 r}\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ is of probability p and that $\left(\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right) \xrightarrow{1 r}\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}\right)$ is of probability q
- then under suitable assumptions (u.s.a.)
$\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}\right) \xrightarrow{2 r}\left(\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}\right)$ is of probability $p q$

Example - differential attack

Differential distribution table for S :

	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	-	-	-	6	-	2	-	-	2	-	-	-	4	-	2	-
4	-	-	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	-	-
..
a	-	-	-	-	2	2	-	-	-	4	4	-	2	2	-	-
b	-	-	-	2	2	-	2	2	2	-	-	4	-	-	2	-
c	-	4	-	2	-	2	-	-	2	-	-	-	-	-	6	-
d	-	-	-	-	-	-	2	2	-	-	-	-	6	2	-	4
e	-	2	-	4	2	-	-	-	-	-	2	-	-	-	-	6
f	-	-	-	-	2	-	2	-	-	-	-	-	-	10	-	2

CiPherFour - some possible characteristics

$$
\left(0,0,0, f_{x}\right) \xrightarrow{S}\left(0,0,0, d_{x}\right)
$$

has a probability of $\frac{10}{16}$. Consequently (since P is linear)

$$
\left(0,0,0, f_{x}\right) \xrightarrow{1 r}(1,1,0,1)
$$

is one-round characteristic of probability $\frac{10}{16}$.

$$
(1,1,0,1) \xrightarrow{S}(2,2,0,2)
$$

has a probability of $\left(\frac{6}{16}\right)^{3}$. Consequently (u.s.a.)

$$
\left(0,0,0, f_{x}\right) \xrightarrow{2 r}\left(0,0, d_{x}, 0\right)
$$

is a two-round characteristic of probability $\frac{10}{16}\left(\frac{6}{16}\right)^{3} \simeq 0.033$.

CIPHERFOUR - iterative characteristics

$(0,0,2,0) \xrightarrow{S}(0,0,2,0)$ has a probability of $\frac{6}{16}$ and therefore $(0,0,2,0) \xrightarrow{1 r}(0,0,2,0)$ is 1 -round characteristic of probability $\frac{6}{16}$

It can be concatenated with itself, e.g.,
$(0,0,2,0) \xrightarrow{2 r}(0,0,2,0)$ has probability $\left(\frac{6}{16}\right)^{2} \simeq 0.14$
And $(0,0,2,0) \xrightarrow{4 r}(0,0,2,0)$ is a 4-round characteristic of probability $\left(\frac{6}{16}\right)^{4}$

These are called "iterative" characteristics

CipherFour - differential attack

Consider CipherFour with 5 rounds and the 4 -round characteristic

$$
(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0)
$$

with a (conjectured) probability of $\left(\frac{6}{16}\right)^{4} \simeq 1 / 51$
Idea of attack:

- choose pairs of messages with desired difference
- for all values of four (target) bits of k_{5}
- from ciphertexts compute backwards one round etc.

If successful, this (sub)attack finds four bits of k_{5}

CIPHERFOUR - differential attack

Consider final round for a pair of texts. One has
$(0,0,2,0) \xrightarrow{S}(0,0, h, 0)$, where $h \in\left\{1,2,9, a_{x}\right\}$
Since P linear, last round must have one of following forms:
$(0,0,2,0) \xrightarrow{1 r}(0,0,0,2) \quad(0,0,2,0) \xrightarrow{1 r}(0,0,2,0)$
$(0,0,2,0) \xrightarrow{1 r}(2,0,0,2) \quad(0,0,2,0) \xrightarrow{1 r}(2,0,2,0)$

Filtering

Use only pairs for which difference in ciphertexts is of one of above four

In our case, most pairs which survive filtering will have difference $(0,0,2,0)$ after four rounds

CipherFour - differential attack

$$
S / N=\frac{\text { prob. correct key is counted }}{\text { prob. any wrong key is counted }}
$$

- a "right" pair of texts "follow" characteristic in each round
- let p be prob. of characteristic
- assume all surviving pairs after filtering are right pairs
- prob. correct key is counted $=p$
- prob. random (wrong) key is counted $=p / 15$
- signal-to-noise ratio:

$$
S / N=\frac{p}{p / 15}=15
$$

CipherFour - differential attack

- how many pairs of plaintexts, M, are needed?
- depends on (at least) $p, S / N$ and on number of target bits
- in our case, $M p=3$ suffices.
- with $M p=3 \Rightarrow M=3 \cdot 51=153$ pairs of plaintexts

CipherFour - differentials

Consider CipherFour with 5 rounds and the 4 -round characteristic

$$
(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow[\rightarrow]{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0)
$$

with a (conjectured) probability of $\left(\frac{6}{16}\right)^{4} \simeq 1 / 51$
In attack only first and last occurrence of $(0,0,2,0)$ is used. In our example, what was used is, in fact

$$
(0,0,2,0) \xrightarrow{1 r}(*, *, *, *) \xrightarrow{\text { rr }}(*, *, *, *) \xrightarrow{1 r_{r}}(*, *, *, *) \xrightarrow{1 r}(0,0,2,0),
$$

where asterisks represent "any value". Such a structure is called a differential

CipherFour - differentials

$(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0)$,
$(0,0,2,0) \xrightarrow{1 r}(0,0,0,2) \xrightarrow{1 r}(0,0,0,1) \xrightarrow{1 r}(0,0,1,0) \xrightarrow{1 r}(0,0,2,0)$,
$(0,0,2,0) \xrightarrow{1 r}(0,0,0,2) \xrightarrow{1 r}(0,0,1,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,2,0)$, $(0,0,2,0) \xrightarrow{1 r}(0,0,2,0) \xrightarrow{1 r}(0,0,0,2) \xrightarrow{1 r}(0,0,1,0) \xrightarrow{1 r}(0,0,2,0)$,

- are four 4-round characteristics: $(0,0,2,0) \rightarrow(0,0,2,0)$
- all four characteristics have a (conjectured) probability of $1 / 51$
- one should think $\operatorname{Pr}((0,0,2,0) \xrightarrow{4 r}(0,0,2,0)) \geq 4 / 51$
- with $M p=3 \Rightarrow M=3 * 4 / 51 \approx 40$ pairs of plaintexts

Differential cryptanalysis in general

Definition

An s-round characteristic is a series of differences defined as an ($s+1$)-tuple

$$
\Omega:\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{s}\right\},
$$

where $\Delta m=\alpha_{0}, \Delta c_{i}=\alpha_{i}$ for $1 \leq i \leq s$

Probability

$\operatorname{Pr}(\Omega)=\operatorname{Pr}\left(\Delta c_{s}=\alpha_{s}, \ldots ., \Delta c_{1}=\alpha_{1} \mid \Delta m=\alpha_{0}\right)$.
Probability is taken over all possible plaintexts and keys

Differential cryptanalysis in general

Find $(r-1)$-round characteristic determining Δc_{r-1} with prob. p Repeat
(1) choose pairs of plaintexts with difference Δm
(2) get the pairs of ciphertexts c and c^{*}
(3) for all possible values of k_{r} do:

- decrypt ciphertexts one round using guess $k_{r}=i$,
- if expected difference Δc_{r-1} is obtained, counter for i incremented
until one counter has value significantly different from other counters

Key recovery part

$$
\begin{aligned}
& k_{r}=i \Rightarrow \tilde{c}=y \\
& k_{r} \neq i \Rightarrow \tilde{c}=?
\end{aligned}
$$

Hypothesis of random-key randomization (standard): \tilde{c} is random

Filtering

Definition (Right pair)

A right pair is a pair of plaintexts with intermediate ciphertexts following the characteristic

Definition (Wrong pair)

A wrong pair is a pair which is not a right pair

- right pairs always suggest the correct value of the key
- strategy: minimise the number of wrong pairs
- often possible from ciphertexts alone to determine that a pair is wrong; in that case the pair is filtered out (not used) in the analysis

Signal to noise ratio

$$
S / N=\frac{\text { prob. correct key is counted }}{\text { prob. a random key is counted }}
$$

k number of key bits to find
p probability of characteristic
m number of pairs required
β ratio of used pairs to all pairs
$\alpha \quad \#$ keys suggested by each used pair

$$
S / N=\frac{m \cdot p}{\frac{m \cdot \beta \cdot \alpha}{2^{k}-1}}=\frac{p \cdot\left(2^{k}-1\right)}{\alpha \cdot \beta}
$$

If $S / N \neq 1$ repeat attack until correct key "sticks out"

Complexity

- chosen plaintexts needed roughly $c \times 1 / p_{\Omega}$, where p_{Ω} probability of characteristic Ω used, $c \geq 1$ a function of S / N (usually small)
- increase S / N ratio: filter out wrong pairs
- success of differential attacks depends on
- probability of characteristic
- number of counters required
- S / N ratio
- filtering
- time to run the attack

Differentials

In attacks based on basic differential cryptanalysis intermediate differences (usually) not used

- characteristic $\Phi=\left(\Delta m, \Delta c_{1}, \ldots \Delta c_{r-2}, \Delta c_{r-1}\right)$
- differential $\Omega=\left(\Delta m, \Delta c_{r-1}\right)$
- $\operatorname{Pr}(\Omega) \geq \operatorname{Pr}(\Phi)$

Differentials and probabilities

- probability of differentials taken over all plaintexts and keys
- in an attack, one key is used. Probability?

Definition (Hypothesis of stochastic equivalence)

For virtually all high probability s-round differentials (α, β)

$$
\begin{aligned}
& \operatorname{Pr}_{M}\left(\Delta c_{s}=\beta \mid \Delta m=\alpha, K=k\right) \approx \\
& \operatorname{Pr}_{M, K}\left(\Delta c_{s}=\beta \mid \Delta m=\alpha\right)
\end{aligned}
$$

holds for substantial fraction of key values k

Linear cryptanalysis

Linear cryptanalysis (Matsui 1993)

- Known plaintext attack
- Uses linear relations between bits of $m, c=e_{k}(m)$ and k
- Suppose with probability $p \neq \frac{1}{2}$

$$
(m \cdot \alpha) \oplus(c \cdot \beta)=0 \quad(*)
$$

- Collect N pairs of plaintext/ciphertext (using same key!)
- T : number of times left side of $\left({ }^{*}\right)$ is 0
- If $p>1 / 2, E(T)>N / 2$
- If m and c independent, $T \simeq N / 2$.

Linear attack: Complexity

- T binomial random variable which is 0 with $p>1 / 2$

$$
\begin{aligned}
\operatorname{Pr}(T>N / 2)=1-\operatorname{Pr}(T \leq N / 2) & \simeq 1-\Phi\left(\frac{N / 2+1 / 2-N p}{\sqrt{p(1-p)} \times \sqrt{N}}\right) \\
& \simeq 1-\Phi(-2 \sqrt{N}|p-1 / 2|) \\
& =\Phi(2 \sqrt{N}|p-1 / 2|)
\end{aligned}
$$

where Φ is the normal distribution function

- With $N=|p-1 / 2|^{-2}$ probability is about 97.72%
- $|p-1 / 2|$ called the bias

Joining linear approximations

Random, independent boolean variables X, Y, and Z
If $\quad \alpha \cdot X=\beta \cdot Y \quad$ with probability p_{1}
and $\quad \beta \cdot Y=\gamma \cdot Z \quad$ with probability p_{2}
then $\quad \alpha \cdot X=\gamma \cdot Z \quad$ with probability $\frac{1}{2}+2\left(p_{1}-1 / 2\right)\left(p_{2}-1 / 2\right)$

Piling Up-Lemma

Let $Z_{i}, 1 \leq i \leq n$, be independent random boolean variables, which are 0 with probability p_{i}. Then

$$
\operatorname{Pr}\left(Z_{1} \oplus Z_{2} \oplus \ldots \oplus Z_{n}=0\right)=1 / 2+2^{n-1} \prod_{i=1}^{n}\left(p_{i}-1 / 2\right)
$$

Joining linear approximations

Piling Up-Lemma

Let $Z_{i}, 1 \leq i \leq n$, be independent random boolean variables, which are 0 with probability p_{i}. Then

$$
\operatorname{Pr}\left(Z_{1} \oplus Z_{2} \oplus \ldots \oplus Z_{n}=0\right)=1 / 2+2^{n-1} \prod_{i=1}^{n}\left(p_{i}-1 / 2\right)
$$

or similarly

$$
2 \operatorname{Pr}\left(Z_{1} \oplus Z_{2} \oplus \ldots \oplus Z_{n}=0\right)-1=\prod_{i=1}^{n}\left(2 p_{i}-1\right)
$$

Linear cryptanalysis - iterated ciphers

- $\left(\alpha \cdot c_{i}\right) \oplus(\alpha \cdot x)=(\alpha \cdot k)$
- $(\alpha \cdot x)=\left(\beta \cdot c_{i+1}\right)$ with $p_{i} \neq 1 / 2$
- $\left(\alpha \cdot c_{i}\right) \oplus\left(\beta \cdot c_{i+1}\right)=0$ with bias $\left|p_{i}-1 / 2\right|$ (whatever value of $(\alpha \cdot k))$
- linear characteristic $\left(\delta_{i}, \delta_{i+1}\right)$ with bias $\left|p_{i}-1 / 2\right|$ means that

$$
\left(\delta_{i} \cdot c_{i}\right) \oplus\left(\delta_{i+1} \cdot c_{i+1}\right)=0
$$

with bias $\left|p_{i}-1 / 2\right|$

Linear characteristics - iterated ciphers

- assume that

$$
\begin{aligned}
&\left(\delta_{0} \cdot c_{0}\right) \oplus\left(\delta_{1} \cdot c_{1}\right)= 0 \text { with bias }\left|p_{1}-1 / 2\right| \\
&\left(\delta_{1} \cdot c_{1}\right) \oplus\left(\delta_{2} \cdot c_{2}\right)= 0 \text { with bias }\left|p_{2}-1 / 2\right| \\
& \ldots \ldots \ldots . \ldots \ldots . \\
&\left(\delta_{s-1} \cdot c_{s-1}\right) \oplus\left(\delta_{s} \cdot c_{s}\right)=0 \text { with bias }\left|p_{s}-1 / 2\right|
\end{aligned}
$$

- then (u.s.a.) $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{s}\right)$ is called an s-round linear characteristic with bias $2^{s-1} \prod_{i=1}^{s}\left|p_{i}-1 / 2\right|$ (piling up biases)

Linear attack - r-round iterated cipher

- consider r-round characteristic $\left(\delta_{0}, \ldots, \delta_{r-1}\right)$ with bias b $\left(m \cdot \delta_{0}\right) \oplus\left(c_{r-1} \cdot \delta_{r-1}\right)=0$
- consider for some value of i :

$$
\left(m \cdot \delta_{0}\right) \oplus\left(g^{-1}(c, i) \cdot \delta_{r-1}\right)=0 \quad(*)
$$

- with $i=k_{r},\left({ }^{*}\right)$ is characteristic for $r-1$ rounds

Assumption

For $i \neq k_{r},\left(^{*}\right)$ is random approximation with bias $\simeq 0$

Linear attack (2)

- assume k_{r} has κ bits
- for $i=0, \ldots, 2^{\kappa}-1$ compute bias of

$$
\left(m \cdot \delta_{0}\right) \oplus\left(g^{-1}(c, i) \cdot \delta_{r-1}\right)=0
$$

using N known plaintexts

- guess $k_{r}=i$, for value of i which produces bias closest to expected
- complexity $N \simeq c \cdot|p-1 / 2|^{-2}, c$ small constant

Probability of linear characteristics

For attack (k is secret key)

$$
\operatorname{Pr}_{M}\left(\left(c_{r-1} \cdot \delta_{r-1}\right) \oplus\left(m \cdot \delta_{0}\right)=0 \mid k \text { is key }\right)
$$

But k unknown? Average over all keys:

$$
\operatorname{Pr}_{M, K}\left(\left(c_{r-1} \cdot \delta_{r-1}\right) \oplus\left(m \cdot \delta_{0}\right)=0\right)
$$

can be hard to calculate

Probability of linear characteristics

Assume that

$$
\left|\operatorname{Pr}_{K}\left(\left(c_{i} \cdot \delta_{i}\right)=\left(c_{i-1} \cdot \delta_{i-1}\right) \mid c_{i-1}=\gamma\right)-1 / 2\right|
$$

is independent of γ
and
assume that round keys are independent, then bias of

$$
\left|\operatorname{Pr}_{M, K}\left(\left(c_{r-1} \cdot \delta_{r-1}\right) \oplus\left(m \cdot \delta_{0}\right)=0\right)-1 / 2\right|
$$

can be calculated from one-round biases and the Piling-up Lemma

Example: CipherFour: block size 16, r rounds

Round keys independent, uniformly random. One round:
(1) exclusive-or round key to text
(2) split text, evaluate each nibble via S-box

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$S(x)$	6	4	c	5	0	7	2	e	1	f	3	d	8	a	9	b

and concatenate results into 16 -bit string $y=y_{0}, \ldots, y_{15}$
(3) permute bits in y according to:

y	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$P(y)$	0	4	8	c	1	5	9	d	2	6	a	e	3	7	b	f

Exclusive-or round key to output of last round

Example cipher - linear attack

Linear approximation table for S (entries are $(p-1 / 2) \cdot 16$)

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 2 | 2 | . | 4 | -2 | 2 | . | 2 | . | -4 | -2 | 2 | . | . | 2 |
| 2 | 2 | . | 2 | . | 2 | 4 | -2 | 2 | . | 2 | . | -2 | -4 | 2 | . |
| 3 | . | 2 | -2 | . | . | 2 | 6 | . | . | 2 | -2 | . | . | 2 | -2 |
| 4 | -2 | 2 | . | -4 | -2 | -2 | . | 2 | . | . | -2 | 2 | -4 | . | 2 |
| 5 | . | -4 | . | . | -4 | . | . | . | -4 | . | . | . | . | 4 | . |
| .. | .. | . | .. | . | .. | . | .. | . | .. | . | .. | . | . | . | . |
| 9 | 2 | -2 | . | . | 2 | -2 | . | -2 | 4 | . | -2 | 2 | . | 4 | 2 |
| a | -2 | . | 2 | . | -2 | . | 2 | 2 | 4 | -2 | 4 | -2 | . | 2 | . |
| b | . | -2 | -2 | . | . | 2 | 2 | . | . | 2 | 2 | . | . | -2 | 6 |
| c | 2 | 2 | . | . | -2 | -2 | . | -2 | . | . | -2 | -6 | . | . | 2 |
| d | . | . | . | -4 | . | 4 | . | -4 | . | -4 | . | . | . | . | . |
| e | 4 | -2 | -2 | . | . | -2 | 2 | . | . | -2 | 2 | . | -4 | -2 | -2 |
| f | -2 | -4 | 2 | . | 2 | . | 2 | 2 | . | -2 | -4 | -2 | . | -2 | . |

CipherFour - linear characteristic

- entry $\left(c_{x}, c_{x}\right)$, value '-6': bias $\frac{6}{16}$, probability $-\frac{6}{16}+\frac{1}{2}=\frac{2}{16}$
- thus $\left(000 c_{x}\right) \xrightarrow{S}\left(000 c_{x}\right)$ has bias $\frac{6}{16}$
- since P is linear, $\left(000 c_{x}\right) \xrightarrow{1 r}\left(1100_{x}\right)$ is one-round characteristic of bias $\frac{3}{8}$
- also, $\left(1100_{x}\right) \xrightarrow{S}\left(4400_{x}\right)$, has bias $2\left(\frac{4}{16}\right)\left(\frac{4}{16}\right)=\frac{1}{8}$
- so (u.s.a.) $\left(000 c_{x}\right) \xrightarrow{2 r}\left(00 c 0_{x}\right)$ is two-round characteristic of bias $2\left(\frac{3}{8}\right)\left(\frac{1}{8}\right)=\frac{3}{32}$

CIPHERFOUR - linear iterative characteristic

Better approach for CipherFour:

$$
\left(8000_{x}\right) \xrightarrow{S}\left(8000_{x}\right)
$$

has bias $\frac{4}{16}$ and therefore

$$
\left(8000_{x}\right) \xrightarrow{1 r}\left(8000_{x}\right)
$$

is a one-round characteristic of bias $\frac{1}{4}$
Use it to build t-round characteristics

$$
\left(8000_{x}\right) \xrightarrow{\text { tr }}\left(8000_{x}\right)
$$

of bias $2^{t-1}(1 / 4)^{t}=2^{-1-t}$

CipherFour - a linear attack

- consider CipherFour with 5 rounds and the four-round characteristic
$\left(8000_{x}\right) \xrightarrow{1 r}\left(8000_{x}\right) \xrightarrow{1 r}\left(8000_{x}\right) \xrightarrow{1 r}\left(8000_{x}\right) \xrightarrow{1 r}\left(8000_{x}\right)$
which (u.s.a.) has bias of $2^{-1-4}=\frac{1}{32}$ according to Piling-up Lemma
- for all values of four bits in last-round key, (partically) decrypt ciphertexts one round, compute bias
- value of key which produces bias of $\frac{1}{32}$ is taken as value of secret key
- $N=c \cdot|p-1 / 2|^{-2}=c \cdot 2^{10}$ known plaintexts required to find four bits of last-round key

Linear attack on DES

- iterative 4-round characteristic
- build 14 -round characteristic with bias 1.2×2^{-21}
- guess on six round key bits in both first and last rounds
- potential to find 12 key bits
- swap role of plaintext and ciphertext, repeat attack
- in total, potential to find 24 bits of key information
- find remaining 32 bits by an exhaustive search

Linear attack on DES

- estimate - with 2^{45} known plaintexts a DES key can be recovered with 98.8% success rate
- Matsui-test:
- January, 1994
- key found in 50 days on 12 HP9735 workstations (120 Mips)
- 2^{43} known plaintexts
- ciphertext only attack possible, assuming English plaintexts encoded in ASCII

Rounding off

- intro to block ciphers
- differential cryptanalysis
- characteristics
- differentials
- linear cryptanalysis
- linear hulls equivalent to differential
- two most general attacks on block ciphers
- good knowledge of how to protect against these attacks, see AES

